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Introduction

Accurate point of load (PoL) voltage control is essential for highly dynamic electronic loads. ‘Adaptive 
loop’ is a technique for efficient, feed-forward compensation of isolated power-management systems 
based on PRM™ Regulator and VTM™ Voltage Transformer combinations.

This application note describes the design methodology for optimal DC set point compensation of PRM 
and VTM combinations[a], including small arrays of two identical VTMs driven by one PRM.

For your reference, an Adaptive Loop Calculator is available at:

http://spicewebprd.vicorpower.com/apps/PRM_VTM_Calculator/Calculator.php.

Adaptive Loop Regulation Concept

Adaptive loop is a model-based, positive-feedback compensation technique that can easily complement 
negative feedback, voltage mode regulation. Figure 1 shows the conceptual block diagram.

While the local voltage feedback loop maintains regulation at the PRM output, the adaptive loop (AL) 
provides compensation for the voltage drops that occur from the PRM output to the actual load. As 
stated before, AL is based on a model that requires VTM temperature and factorized bus current as 
inputs. The resistive behavior of power lines (factorized bus and output line) as well as the VTM, enables 
accurate modeling of their voltage drops.

Note: The calculations represented in this application note apply to 24V, 36V and 48V input PRMs. Though the same 
methodology applies to 28V input MIL-COTS PRMs, care should be taken to apply the correct values. For further 
assistance, please contact a Field Applications Engineer via your local Technical Support Center.

Accurate Point-of-Load Voltage Regulation  
Using Simple Adaptive Loop Feedback

Figure 1 
Adaptive Loop Regulation 

Conceptual Diagram

 

K

 

 

PRM 

output voltage 

Voltage

loop

PRM VTM

Input power line

Adaptive

loop
Voltage drop 

model

PRM 

output 

current

VTM temperature

Factorized bus

Isolation 

barrier

Output 

power line

L
O

A
D

APPLICATION NOTE  |  AN:024

Maurizio Salato
Principal Engineer

Contents Page

Introduction 1

Adaptive Loop 
Regulation Concept 1

PRM-AL Block Diagram 2

Local Voltage 
Feedback Loop: 2

Adaptive Loop Circuit: 3

DC Set Point Calculation 4

Considerations 8

Adaptive Loop with 
Half-Chip VTMs 9

Design Example with 
VI Chip® Customer Boards 13

Conclusion 17

Appendix A 18

http://spicewebprd.vicorpower.com/apps/PRM_VTM_Calculator/Calculator.php


 AN:024 Page 2

Major benefits of this approach are:

nn No signals need to be transmitted across VTM’s™ isolation barrier 
n Simpler circuit, lower component count

Regulation accuracy is affected by the accuracy of this model; this application note explains how to 
optimize the model for a given system, and how to estimate the obtained accuracy.

Standard regulation techniques are based on direct observation and integral error compensation of PoL 
voltage, and the steady state error (compared to the reference) is therefore forced to be zero. 
AL only asymptotically approaches the zero error state, therefore widening the total distribution of 
the PoL voltage.

PRM-AL Block Diagram

Figure 2 shows the functional block diagram for a full-chip PRM-AL regulator (e.g. P045F048T32AL). 
The OS and SC pins provide for local voltage feedback loop setting, while the VC and CD pins provide 
for settings and connections of the downstream system model.

In summary:

Local Voltage Feedback Loop:

nn VREF, through R18, provides a reference voltage source on the SC pin. This is routed to 
 the non-inverting input of the error amplifier, through the gain stage G1.

nn The factorized bus (+OUT) voltage is fed back to the inverting input of the error 
 amplifier through R16.

nn SC and OS provide for the connection of the external resistor dividers.

Figure 2 
PRM-AL Functional Block 

Diagram
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Adaptive Loop Circuit:

nn The voltage controlled current source has variable gain, controlled by the resistance connected 
 between CD and signal ground (SG) pins. The current injected on the VC line by the variable gain 
 transconductance amplifier is:

nn directly proportional to the voltage across the sense resistor RS

nn inversely proportional to the resistor connected between CD and SG 
according to the following relationship:

  

where IF is the factorized bus (PRM™ output) current and V–OUT is the voltage drop across RS.

nn The VC pin voltage is added to the reference pin voltage SC through the gain stage G2.

A PRM™ and VTM™ system is considered, as shown in the block diagram in Figure 3. The system PCB 
adds further voltage drops from the PRM output to the load: the factorized bus resistance, RF, and the 
output line resistance, RO, which are assumed to be constant and equally divided on the positive and 
negative trace / wire. In order to account for them, these resistances must be estimated or measured.

It is important to correctly identify the total voltage drop parameters, which are RF, ROUT and RO in this 
specific case. Their compensation model must therefore be resistive, and temperature dependent.

Such a model is easy to implement, thanks to:

nn The PTC resistor embedded in the VTM module, which will change its value according to 
  the VTM temperature. 

nn RVC resistor, which allows precise match of RPTC to VTM ROUT temperature characteristic.
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The parallel of RVC and RPTC resistors, in series with RF/2 and RS resistors constitutes the voltage drop 
model. The AL circuitry forces a scaled version of the PRM™ output current (IAL) in the VC line, which 
then merges with the factorized bus current IF on its return path (as shown in Figure 4).

The voltage obtained on the VC pin, with some scale factor, is the model of the total voltage 
drop in the system.

DC Set Point Calculation

The necessary inputs to the procedure are shown in Table 1.

Standard Full-Chip Characteristics Power System Characteristics

nn ROUT_25 (ROUT_AMB in datasheet): 25°C 
     output resistance

nn ROUT_100 (ROUT_HOT in datasheet): 100°C 
     output resistance

nn K: transformer ratio

nn RVC-INT: VTM VC pin internal resistance

nn TVC_COEFF: VC internal resistor temperature 
     coefficient

nn PNL: no load power dissipation at nominal 
     input voltage

nn VF_NOM: nominal factorized bus voltage at no load

nn IOUT: maximum system (VTM) output current

nn RF: factorized bus (PRM to VTM) total resistance

nn RO: output bus (VTM to point load) total resistance
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The inputs listed in Table 1 can be found in each individual VTM’s datasheet; see the Adaptive Loop 
Calculator tool for more information:

http://spicewebprd.vicorpower.com/apps/PRM_VTM_Calculator/Calculator.php.

With reference to Figure 3:

 A. Calculate the maximum voltage drop (at 25ºC and 100ºC) due to VTM™ output 
 resistance ROUT.

 B. Calculate the maximum current flowing on the factorized bus.

Although the no load power (PNL) required by the VTM is input voltage dependent, the variation has 
only a minor influence on the AL compensation, and will therefore be neglected in the following steps.

 C. Calculate the total PRM™ output voltage increase that will compensate all the drops  
 (factorized bus resistance, VTM output resistance and output bus resistance).

(2)∆VROUT_25 = ROUT_25 • IOUT

(3)∆VROUT_100 = ROUT_100 • IOUT

(4)IF = K • IOUT + 
PNL

VF_NOM

(5)∆VF_25 =  
∆VROUT_25 + RO IOUT

K + (RF + RS ) • IF 

(6)∆VF_100 =  
∆VROUT_100 + RO IOUT

K + (RF + RS ) • IF 

http://spicewebprd.vicorpower.com/apps/PRM_VTM_Calculator/Calculator.php
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 D. Calculate the total temperature coefficient of the power circuit and the RVC resistor needed   
 to match it.

The PTC resistor and the VTM™ ROUT resistance are subject to the same temperature, but they have 
different rates of change, as shown in Figure 5.

In order for the model to precisely match the voltage drop over temperature, its slope must match the 
system slope. The RVC resistor in parallel to RPTC can be calculated in order to meet this condition.

There is an important reason for choosing a parallel rather than a series resistor to match the 
system temperature coefficient. At start up, the PRM™ issues a 14V, 10ms pulse on the VC line to 
synchronously start the VTM. A series resistor would cause significant amplitude change on this signal, 
avoided by the parallel arrangement. However, the designer should exercise judgment and avoid 
extreme cases, where the temperature dependency might be so low as to cause the RVC value to fall 
below 200Ω (which would cause overload during the 14V, 10ms startup pulse).

 E. Calculate the maximum VC pin voltage for the given system at 25ºC (100ºC should provide   
 the same value, given the temperature dependency has been taken care of through   
 RVC, Equation 7):

TVTM [ºC]25 100

ROUT_25

ROUT_100

RPTC_25

RPTC_100

ROUT
RPTC

(7)∆RTOT =  
∆VF_100 
∆VF_25

=

RVC • RPTC_100

RVC + RPTC_100

RVC • RPTC_25

RVC + RPTC_25

⇒

RVC = (1 – ∆RTOT)  
RPTC_25 • RPTC_100

∆RTOT • RPTC_25 – RPTC_100

(8)VC_MAX_25 = IAL •
RF 
2 + RS

+ (IF + IAL) •  
RPTC_25 • RVC

RPTC_25 + RVC
( )

= RS

IF 
RCD_MIN

IF + RS  
RPTC_25 • RVC

RPTC_25 + RVC ( )IF

RCD_MIN
•  •  •  

RF 
2 + RS( )

=

Figure 5 
ROUT and RPTC vs. VTM 

Internal Temperature
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Minimum allowable RCD value for current products is 20Ω.

 F. Calculate the needed (if any) VSC trim that allows enough AL dynamic range under the worst 
 case: VC_MAX_25 andΔ∆VF_100 (this will allow enough design margin).

The voltage on VC, through the gain stage G2, is summed to the reference voltage SC in order to 
compensate for the voltage drop ∆VF. Because the VC voltage dynamic range is set, VSC might be 
reduced in order to match the relative changes of factorized bus and adaptive loop compensation.

G1 and G2 gains are 0.961 and 0.0386 respectively.

If VSC ≤ VREF = 1.24V, the external resistor to be connected on SC will be easily calculated as following:

The absolute minimum value for VSC is 0.25V, because of the characteristic of the internal error 
amplifier. The minimum resistance value for RSC is therefore 2550Ω.

 G. Calculate the voltage feedback divider resistor needed to set the nominal output voltage.

ROS defines the gain on the voltage feedback, which accommodates for the chosen reference voltage 
VSC. It is recommended to calculate its value using the VSC voltage obtained with a standardized 
value resistor as RSC. Moreover, if a standard value resistor is not available to match (within 0.2%) the 
calculated ROS value, it is strongly recommended to use a parallel configuration.

 H. Calculate the RCD resistor that allows AL to compensate for the drops (25ºC or 100ºC will   
 give the same result, because of RVC).

(9)
∆VF_100 
VF_NOM

≤ ⇒ VSC ≤
G2 • VC_MAX_25 

G1 • VSC

G2 • VC_MAX_25 

G1

∆VF_100 
VF_NOM

(10)RSC = R18

VSC

VREF – VSC

(11)
VSC 

VF_NOM – G1 • VSC 
⇒VF_NOM = G1 • VSC

R16 + ROS 
ROS

ROS = G1 • R16
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First, substitute the VC line voltage at full IF current (room temperature):

into the expression for the related factorized bus increase:

Then solve for RCD:

Considerations

In order to improve regulation accuracy, the following guidelines should be followed:

nn Discrepancy between the model and the system will directly affect regulation accuracy. System   
 characterization is strongly recommended during the design phase, specifically factorized bus 
 (RF) and output line (RO) resistances.

nn Statistical distribution of components values plays also a key role on accuracy distribution.  
 To this end, ‘Monte Carlo’ (or similar) analysis and optimization is strongly encouraged.  
 It should include all the components directly affecting regulation; i.e., setting resistors, model   
 resistors and component characteristics. Any extra component designed in the system;  
 i.e., filter inductors, connectors, etc., should also be included if affected by variability.

nn While the impact of RS and RF on VC voltage may be neglected in a few cases, it normally    
 affects accuracy distribution. In order to evaluate it, both resistors should be included in  
 the analysis.

∆VF_25 = G2 • VC_25   
R16 + ROS

ROS

=  

= G2 •
RS • IF   

RCD

+ IF

RPTC_25 • RVC

RPTC_25 + RVC
( ) •  

RF 
2 + RS( )RS • IF

RCD
•  +  

R16 + ROS

ROS

RCD =

RF 
2 + RS+ 

R16 + ROS

ROS
)(RPTC_25 • RVC

RPTC_25 + RVC

G2 RS IF

RF 
2

+ RS

R16 + ROS

ROS
)(∆VF_25 – G2 IF

(13)

(12)VC_25 =
RF 
2 + RS+ 

RS • IF

RCD
( )RS • IF 

RCD

+ IF( )•  
RPTC_25 • RVC

RPTC_25 + RVC
•  
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Adaptive Loop with Half-Chip VTMs

The major difference between full- and half-chip VTMs™ is the absence of temperature feedback. While 
the full-chip VTMs implement a PTC resistor, the half-chip modules use a simple precision resistor, as 
shown in Figure 6.

 

The absence of temperature feedback slightly degrades the regulation accuracy; however, the  
half-chip units have tighter parameter distributions, which partially compensate for the reduced model 
accuracy. The control configuration in this case is shown in Figure 7.

The voltage drop model also differs with the one for the full-chip version (Figure 3), resulting in the 
simpler one shown in Figure 8.
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Having explained the differences, it is now possible to revise the design procedure in this specific case. 
Table 2 shows the necessary inputs.

Standard Full-Chip Characteristics Power System Characteristics

nn ROUT_25 (ROUT_AMB in datasheet): 25°C 
     output resistance

nn ROUT_100 (ROUT_HOT in datasheet): 100°C 
     output resistance

nn K: transformer ratio

nn RVC (RVC-INT in datasheet): VTM™ VC pin 
     internal resistance

nn PNL: no load power dissipation at nominal 
     input voltage

nn VF_NOM: nominal factorized bus voltage at no load

nn IOUT: maximum system (VTM) output current

nn RF: factorized bus (PRM to VTM) total resistance

nn RO: output bus (VTM to point load) total resistance

The inputs listed in Table 2 can be found in each individual VTM’s™ datasheet; see the Adaptive Loop 
Calculator tool for more information:

http://spicewebprd.vicorpower.com/apps/PRM_VTM_Calculator/Calculator.php. 
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Figure 8 
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with Half-Chip VTMs

Table 2 
Adaptive Loop Calculation 

Procedure Inputs for  
Half-Chip VTMs

http://spicewebprd.vicorpower.com/apps/PRM_VTM_Calculator/Calculator.php
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For sake of clarity, only the steps that differ from the procedure already explained for the full-chip 
VTMs are reported.

Step(s):

 A., B., C. unchanged

 D. Calculate the total temperature coefficient of the power circuit at the estimated VTM™ 
 working temperature.

The VTM ROUT resistance is temperature dependent, as shown in Figure 9.

In order for the model to match the system voltage drop better, the VTM operating temperature should 
be estimated. In cases where temperature is unknown, a conservative approach would be to assume the 
module will operate at half of its temperature range, for example 75ºC:

 

Linear interpolation used in Equation 14 is acceptable in this case, as ROUT temperature 
dependency is linear.

 E. Calculate the maximum VC pin voltage for the given system.

 

 F., G. unchanged

TVTM [ºC]25 100

ROUT_25

ROUT_100

ROUT

(14)∆VF_75 = ∆VF_25 
∆VF_100 – ∆VF_25

75 • 50 + 

(15)VC_MAX = IAL • RVC + (IF + IAL) •  
RF 
2 + RS( )

= RS

IF 
RCD_MIN

IF + RS  ( )IF

RCD_MIN
• RVC +   •  

RF 
2 + RS( )

=

Figure 9 
Half-Chip VTM ROUT vs. 

Module Internal Temperature
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 H. Calculate the RCD resistor that allows AL to compensate for the drops.

  First, substitute the VC line voltage at full IF current (ambient temperature):

   

  into the expression for the related factorized bus increase:

    

  

  Then solve for RCD:

 (16)VC = 
RS  • RS 

RCD
( )RS • IF 

RCD
+ IF  •  

RF 
2 + RS( )• RVC + 

∆VF_75 = G2 • VC   
R16 + ROS

ROS
= 

=G2 •
RS • IF 

RCD
( )RS • IF 

RCD
+ IF  •  

RF 
2 + RS( )• RVC + 

R16 + ROS

ROS

∆VF_75 – G2  

R16 + ROS

ROS
+ RS G2

RCD =
RS IF RVC + 

RF 
2( )

R16 + ROS

ROS

RF 
2 + RS( ) IF  

 (17)
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Design Example with VI Chip® Customer Boards

System requirements:

Input: 36 – 75V 
Output: 5V, 36A, 180W

VI Chip selection:

PRM™: P048F048T24AL (due to the wide range input voltage and the power level).

VTM™: V048F060T040 (due to output voltage and current requirements).

Corresponding customer boards are P048F048T24AL-CB and V048F060T040-CB respectively. They 
come with a connector which routes factorized bus and VC line, as explained in the 
User Guide UG:003. Figure 10 shows the two selected boards once connected.

First, collect the characteristics from the VTM’s data sheet and from Table 2:

nn ROUT_25: 5.76mΩ

nn ROUT_100: 6.73mΩ

nn K: 1/8

nn RPTC_25: 1000Ω

nn RPTC_100: 1000 • (1+0.0039 • 75) = 1293Ω

nn PNL: 2.7W

Figure 10 
PRM and VTM  

Customer Boards

http://www.vicorpower.com/documents/user_guides/vichip/ug-prm-vtm-evalboard.pdf
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Second, calculate or measure the power system characteristics:

nn VF_NOM: VOUT/K = 40V  

nn IOUT: 36A

nn RF and RO: these values are strictly related to the board traces or cables used to route power. 
 A convenient way to obtain these values is to identify the current paths of interest,    
 as shown in Figure 11.

Then, a simple DC impedance measurement from terminal to terminal will provide RF and RO values. In 
this particular case:

nn RF = 10mΩ

nn RO = 80µΩ

It is now possible to apply the proposed procedure.

 A. Calculate the maximum voltage drop (at 25ºC and 100ºC) due to VTM™ output  
 resistance, ROUT.

 B. Calculate the maximum current flowing on the factorized bus.

∆VROUT_25 = ROUT_25 • IOUT = 0.00576 • 36 = 0.207V

∆VROUT_100 = ROUT_100 • IOUT = 0.00673 • 36 = 0.242V

IF = K • IOUT + 
PNL

VF_NOM
• 36 + = 4.568A 

1
8

2.7
40

= 

Figure 11 
Factorized Bus Current Path 

(Long-Dash Red)  
and Output Current Path 

(Short-Dash Blue)
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 C. Calculate the total PRM™ output voltage increase that will compensate all the drops   
 (factorized bus resistance, VTM™ output resistance and output bus resistance).

 

 

 

 D. Calculate the total temperature coefficient of the power circuit and the RVC resistor needed   
 to match it.

 

The RVC value is greater than 200Ω, therefore valid. The nearest available 1% resistor value chosen 
for RVC is 1500Ω.

 E. Calculate the maximum VC pin voltage for the given system at 25ºC. From the PRM-AL   
 data sheet, RCD_MIN = 20Ω:

 F. Calculate the needed (if any) VSC trim that allows enough AL dynamic range under the   
  worst case: VC_MAX_25 and ∆VF_100.

 

As VSC ≤ VREF = 1.24V, RSC must be installed:

∆VF_25 =  
∆VROUT_25 + RO IOUT

K + (RF + RS ) • IF =  
0.207 + 80µ • 36 

1
8

+ (10m + 10m) • 4.568 = 1.77V

∆VF_100 =  
∆VROUT_100 + RO IOUT

K + (RF + RS ) • IF =  
0.242 + 80µ • 36 

1
8

+ (10m + 10m) • 4.568 = 2.05V

∆RTOT =  
∆VF_100 
∆VF_25

= ⇒

RVC = (1 – ∆RTOT)  
RPTC_25 • RPTC_100

∆RTOT • RPTC_25 – RPTC_100

2.05
1.77

= 1.158

= (1 – 1.158)
1000 • 1293 

1.158 • 1000 – 1293 
= 1513Ω

VC_MAX_25 = RS

IF 
RCD_MIN

IF + RS  
RPTC_25 • RVC

RPTC_25 + RVC ( )IF

RCD_MIN
•  •  •  

RF 
2 + RS( )=

= 10m
4.568

20
1000 • 1500
1000 + 1500

•  4.568 + 10m+( 4.568
20 ) •  10m 

2 + 10m( )= 1.44V

0.0386 • 1.44  VSC ≤
2.05
40

G2 • VC_MAX_25 

G1

∆VF_100 
VF_NOM

0.961
= = 1.12V

RSC = R18

VSC

VREF – VSC
= 10k

1.12
1.24 –1.12 = 93.3kΩ
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RSC is greater than 2550Ω, therefore acceptable. The closest 1% tolerance value is chosen, 
RSC = 93.1kΩ, which provides for an obtained VSC = 1.12V

 G. Calculate the voltage feedback divider resistor needed to set the nominal output voltage.

 

The closest standard value would be 2550Ω, which is almost 1% off the target. In order to gain 
accuracy, the highest standard value is chosen, 2610Ω, and a parallel resistor is used in order to closely 
match the required value:

 ROS1 = 2610Ω  and  ROS2 = 187kΩ

 H. Calculate RCD resistor that allows AL to compensate for the drops.

 

 

The nearest standard value is chosen, RCD = 23.7Ω.

The design is now complete, the calculated resistors: 
RSC = 93.1kΩ, ROS1 = 2610Ω, ROS2 = 187kΩ, RVC = 1500Ω and RCD = 23.7Ω 
can be implemented in the two customer boards and regulation accuracy verified.

VSC 
VF_NOM – G1 • VSC 

= 0.961 • 93.1k 
1.12 

40 – 0.961 • 1.12 
ROS = G1 • R16 = 2574Ω 

RCD =

RF 
2 + RS+ 

R16 + ROS

ROS
)(RPTC_25 • RVC

RPTC_25 + RVC

G2 RS IF

RF 
2

+ RS

R16 + ROS

ROS
)(∆VF_25 – G2 IF

=

=

93.1k + 2574
2574

0.0386 10m • 4.568 
10m 

2
+ 10m+ )(1k • 1.5k

1k + 1.5k
10m 

2
+ 10m93.1k + 2574

2574 )(1.77 – 0.0386  • 4.568
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Conclusion

This procedure highlights the adaptive loop regulation concept and the design procedure to achieve 
good voltage regulation for a simple PRM™/VTM™ combination.

Monte Carlo analysis shows that 1% regulation accuracy over line, load and temperature can be 
statistically achieved 82% (or greater) of the time. Figure 12 shows accuracy distribution for the design 
example previously illustrated.

The same design concepts are directly applicable to arrays of VI Chips® if proper modeling applied. It is 
recommended to contact VI Chip Application Engineering for any array involving two or more PRMs and 
three or more VTMs. For your reference, an Adaptive Loop Calculator is available at: 

http://spicewebprd.vicorpower.com/apps/PRM_VTM_Calculator/Calculator.php.
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Appendix A

Changes applicable to MIL-COTS versions of VI Chips®.

MIL-COTS VTM™: parameters and modeling of MIL-COTS VTMs are identical to the commercial 
counterparts with the same K factor. The AL design procedure can be applied directly.

MIL-COTS PRM™: parameters and modeling of MP028F036M12AL are identical to the commercial parts 
as with the only exception of R16 which changes to 69.8kΩ, as shown in the figure below.

For your reference, an Adaptive Loop Calculator for MIL-COTS products is available at:

http://spicewebprd.vicorpower.com/apps/PRM_VTM_Calculator/Calculator.php.
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